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tion processes between a plasma and a magnetic field. At any
point in space and time the macroscopic variables v, B, p, rA code, SPECTOR, has been developed to determine the complete

spectrum (both stable and unstable modes) for a resistive plasma (and h for the resistive case) describe the state of the system.
in toroidal geometry described by the linearized, compressible, B is the magnetic field, v is the macroscopic fluid velocity, p
magnetohydrodynamic, single fluid equations. The structure of the

is the thermal pressure, h is the resistivity of the plasma, andcode is explained and comparisons with other codes are presented
r is the mass density. G is the ratio of specific heats. Thewhich test its validity. Some applications to both cylindrical and

tokamak-like plasmas are presented to illustrate the scope of the following resistive MHD equations describe how this state
code particularly for the stable part of the spectrum. A study is changes in time:
made of the effect of resistivity on a typical toroidal Alfvén eigen-
mode. Q 1996 Academic Press, Inc.

r
dv
dt

5
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(= 3 B) 3 B 2 =p, (1)
1. INTRODUCTION

Numerical approaches to the study of stability using toroidal ­B
­t

5 = 3 (v 3 B) 2
1
e0

= 3 (h= 3 B), (2)
resistive magnetohydrodynamics (MHD) have been carried out
for some time (Charlton et al. [1], Storer [2], Hughes et al.
[3], Vlad et al. [4], and Kerner et al. [5]). These codes followed ­p

­t
5 2v ? =p 2 Gp= ? v, (3)

the significant development of the ideal MHD toroidal stability
codes ERATO [6] and PEST [7]. The emphasis in most of
these codes was on the study of the discrete unstable modes, ­p

­t
5 2v ? =r 2 r= ? v, (4)

particularly in the regions where ideal MHD would predict
stability. Due to the analytic and numerical complexities of the

= ? B 5 0. (5)analysis involved in these toroidal codes, simplifying assump-
tions were made in some early versions (e.g., incompressibility
[1–3], reduced equations [8]). Non-linear time development As they stand the resistive MHD equations are non-linear and
has, to a large extent, been restricted to using the reduced consequently are extremely difficult to analyse theoretically. If
equation set [8]. There has been a renewed interest in the study we make the assumption that plasma stability can be investi-
of the complete spectrum of resistive MHD, both because of

gated by considering infinitesimal perturbations around thethe interesting structure of the stable, resistive spectrum (Ryu
equilibrium, we can focus our analysis on the linearised resistiveand Grimm [9], Kerner et al. [10–12], Dewar and Davies [13])
MHD equations. Any perturbation may then be expressed asand through the recognition of the importance of toroidal Alfvén
the sum of eigenfunctions, and these eigenfunctions are uniqueeigenmodes (Cheng and Chance [14], Poedts and Schwartz
for any given equilibrium and boundary conditions. We recog-[15], Turnbull et al. [16], Kerner et al. [17]). We present in
nise that non-linear effects are important in many situations;this paper a description of a code, SPECTOR (Schellhase [18]),
however, it is certainly also important to avoid linear instabilit-which has been developed to study the spectrum of the linear-

ized, compressible equations of resistive MHD in toroidal ge- ies and linear effects are important in identifying the stable
ometry. This code has been partially validated by comparison modes which are excited by external influences. If we neglect
with a toroidal ideal code [6] and by a study of the stable the effects of the other transport coefficients and perturb the
spectra of cylindrical plasmas [9–13]. macroscopic variables according to, Z ⇒ Z 1 z, where Z is

the equilibrium value and z is the first-order perturbation value,2. THE RESISTIVE MHD EQUATIONS
and consider the zeroth- and first-order equations (assuming
that the plasma has zero velocity at equilibrium), we obtain theMHD is a single fluid description of a plasma. The MHD

model is one of the simplest models for describing the interac- standard MHD equilibrium equations,
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16 SCHELLHASE AND STORER

J 3 B 5 =P, (6) Since the stability spectrum can be separated into compress-
ible and incompressible sections, separation of the velocity

= 3 B 5 e0 J, (7)
field equations into their respective parts is desirable. This is
achieved by taking the curl and divergence of Eq. (15). It is= ? B 5 0, (8)
possible to integrate Eq. (16). Whilst offering a simplification,
it also has the effect of introducing a gauge for a determinedwhich are employed to determine the equilibrium state, and the
by an arbitrary function f, viz.linearised resistive MHD equations,

­v
­t

5 (= 3 B) 3 b 1 (= 3 b) 3 B 2 =p, (9) ­(= 3 = 3 u)
­t

5 = 3 [(= 3 B) 3 (= 3 a)

1 (= 3 = 3 a) 3 B], (18)­b
­t

5 = 3 (v 3 B) 2 = 3 h (= 3 b), (10)

­(=2w)
­t

5 2=2p 1 = ? [(= 3 B) 3 (= 3 a)­p
­t

5 2v ? =P 2 GP= ? v. (11)

1 (= 3 = 3 a) 3 B], (19)

which can be analysed with the equilibrium quantities to deter- ­a
­t

5 (= 3 u 1 =w) 3 Bmine stability. In order to cast Eqs. (6)–(11) in this dimen-
sionless form we introduce a characteristic field amplitude, B0 ,

2 h (= 3 = 3 a) 1 =f, (20)which is chosen to be the toroidal magnetic field in the vicinity
of the magnetic axis, and a characteristic length, the plasma ­p

­t
5 2(= 3 u 1 =w) ? =P 2 GP=2w, (21)radius rp . With these choices we define the time scale to be

the toroidal Alfvén transit time,

Equations (18)–(21) are the final form of the equations thattA 5 rp (e0r)1/2/B0 . (12)
will be analysed. The choice of the gauge f for a is an important
decision and this can be used to advantage. We have foundWe divide the velocity into compressible and incompressible
that choosing f to be equal to B ? u eliminates any derivativesparts by writing the velocity field perturbation in terms of scalar
of u with respect to the radial flux coordinate (c) on the right-and vector potentials via
hand side of Eq. (20). The direct consequence of this is that
there are only algebraic factors of u when Fourier analysisv 5 = 3 u 1 =w, (13)
in the poloidal and toroidal directions is performed, with the
resultant numerical advantages. By further testing it was foundwhere, by taking the divergence of v, we see that u is the
that introduction of a damping term h(c) (­ac/­c) into f pro-incompressible component and w is the compressible compo-
vides sufficient attenuation of unwanted numerical oscillations,nent of the macroscopic plasma velocity. We also write the
which otherwise appear. Furthermore, inclusion of this termmagnetic field in terms of a vector potential,
has the tendency to remove the spurious modes that may have
arisen as a consequence of spectral pollution. Although theb 5 = 3 a, (14)
number of these spurious modes is reduced substantially by
the gauge term, they are not entirely eliminated but can beso that the criteria = ? b 5 0 is satisfied for all a. Substituting
clearly identified by their highly oscilliatory nature which is(13) and (14) into Eqs. (9)–(11) leads to
associated with the number of radial mesh points taken. Some
of the remaining spurious modes, which primarily occur near­(= 3 u 1 =w)

­t
5 (= 3 B) 3 (= 3 a) the real g-axis, disappear when the number of radial mesh

points are increased, leaving others whose position on the g-
1 (= 3 = 3 a) 3 B 2 =p, (15) plane depends on the number of radial grid points, thus giving

a pointer to their nature.­(= 3 a)
­t

5 = 3 ([= 3 u 1 =w] 3 B) By analysing these equations, we can determine both com-
pressible and incompressible spectra in cylindrical and toroidal

2 = 3 h(= 3 = 3 a), (16) geometries. The set of equations which correspond to incom-
pressible motion can be obtained by setting w 5 0 in Eq. (20).

­p
­t

5 2(= 3 u 1 =w) ? =P Solving Eqs. (18) and (20), with a given equilibrium, for a and
u would lead to the incompressible solution [2, 3]. Solving
Eqs. (18)–(21) simultaneously, with a given equilibrium, for2 GP= ? (= 3 u 1 =w). (17)
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a, u, w, and p provides us with a solution which takes full partial derivative with respect to the poloidal flux C. We obtain
account of compressibility. C as a function of X and Z and map this to identify C as a

The MHD equilibrium obtained from a solution to the equa- function of the flux coordinate c. This enables us to determine
tions of pressure balance ((6)–(8)) defines a natural toroidal P, f, g, and q as functions of the normalised flux coordinate c [7].
coordinate system with nested toroidal flux surfaces defining
one of the coordinate surfaces. We use the flux coordinate

3. TOROIDAL DECOMPOSITION OF THE EQUATIONSsystem in which c labels the magnetic surfaces, u corresponds
to the generalised poloidal angle with a period of 2f, whilst f

We can decompose the basic vectors a and u in terms ofcorresponds to the generalised toroidal angle with a period of
their covariant components. Thus we express2f (Grimm et al. [6], Storer [2]). Since the magnetic field lines

lie in the flux surfaces (B ? =c 5 0) we can express the
equilibrium magnetic field in terms of the flux coordinate sys- a 5 ac =c 1 au=u 1 af =f (25)
tem as

and

B 5 B0( f (c)=f 3 =c 1 Rg(c)=f), (22) u 5 uc=c 1 uu =u 1 uf =f. (26)

where B0 is identified as the value of the magnetic field at the
Each component of the vectors a and u have a c, u, f, and t

magnetic axis, R is chosen to be the distance of the magnetic
dependence. These are Fourier analysed in terms of both the

axis from the axis of symmetry, g(c) is the toroidal field func-
toroidal and poloidal angles. Due to the axisymmetry of the

tion, and f (c) is the poloidal field function. The choice of
toroidal equilibrium, the toroidal modes decouple and thus can

Jacobian ) 5 cc X2 defines the poloidal angle u, where c is
be treated independently. Thus we can specifically write the

a constant adjusted so that the flux coordinate c which labels
toroidal components of the perturbed variables as

the magnetic surfaces, takes on the values of c 5 0 at the
magnetic axis and c 5 1 on the surface. The magnetic field is
normalised so that B0 5 1. With this choice of Jacobian the uc (c, u, f, t) 5 O

l

iucl (c) exp(ilu 2 inf 2 igt),
poloidal and toroidal field functions and safety factor q(c) are
related via

uu (c, u, f, t) 5 O
l

uul (c) exp(ilu 2 inf 2 igt),

f (c) 5
cRg(c)c

q(c)
. (23) uf (c, u, f, t) 5 O

l

ufl (c) exp(ilu 2 inf 2 igt),

ac (c, u, f, t) 5 O
l

acl (c) exp(ilu 2 inf 2 igt),

(27)
If we specify the pressure P and toroidal field function g as
functions of the poloidal flux, an axisymmetric toroidal equilib-
rium can be determined numerically by solving the Grad– au (c, u, f, t) 5 O

l

iaul (c) exp(ilu 2 inf 2 igt),
Shafranov equation,

af (c, u, f, t) 5 O
l

iafl (c) exp(ilu 2 inf 2 igt),
2D*C 5 (2f)2 (X 2P9 1 R2gg9), (24)

w (c, u, f, t) 5 O
l

iwl (c) exp(ilu 2 inf 2 igt),
which, for the case of toroidal axisymmetry, is a two-dimen-
sional, nonlinear, elliptic, partial differential equation obtained

p (c, u, f, t) 5 O
l

ipl (c) exp(ilu 2 inf 2 igt),from the reduction of the ideal MHD equilibrium equations
((6)–(8)), where

where l represents the poloidal mode number, n represents the
D* 5 X

­

­X
1
X

­

­X
1

­2

­Z 2 , toroidal mode number, t denotes the time dependence of the
perturbed variables, and g denotes the oscillatory frequency of
the plasma. The factor i is included explicitly in the analysis
so that the real and imaginary terms decouple for up–downwith (X, f, Z) being the cylindrical coordinate system used for

axisymmetric toroidal equilibria and the prime denoting the symmetry [2]. In this case we need to sum over the various
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poloidal components defined by l, to account for the poloidal
2i g O

l
FB1(l9, l, c) wl 1 B2 (l9, l, c)

­wl

­c
1

­

­c
(B3 (l9, l, c) wl)coupling that is evident in this particular geometry.

Since we are employing non-orthogonal flux coordinates, the
vector expressions comprising the basic equations (18)–(21)

1
­

­c
SB4 (l9, l, c)

­wl

­c
DGare neither easy nor trivial to calculate. To perform the vector

operations, we need to utilise the standard non-orthogonal vec-
tor identities [19, 2]. It is convenient to multiply equations
(18)–(21) by the Jacobian ), before performing the Fourier 5 O

l
FC1 (l9, l, c) pl 1 C2 (l9, l, c)

­pl

­c
transforms. We have a choice of expanding the vector equations
covariantly or contravariantly. For computational simplicity
and variable symmetry, we choose to consider the contravariant 1

­

­c
(C3 (l9, l, c) p1) 1

­

­c
SC4(l9, l, c)

­pl

­c
DG (29)

form of the incompressible velocity vector equation (18) and
the covariant form of the magnetic field vector equation (20).
Some simplification is possible by using integration by parts 1 O

l
O

b
FD1ab (l9, l, c) abl 1 D2ab (l9, l, c)

­abl

­cto eliminate the u-derivatives, where possible, and by replacing
all f-derivatives of a, u, w, or p by the combination (2in),
since their f-dependence is always of the form e-inf. 1

­

­c
(D3ab (l9, l, c) abl 1

­

­c
SD4ab (l9, l, c)

­abl

­c
DG

After performing the Fourier analysis, the three contravariant
components of the curl of the velocity equation,

1 O
l
F ­

­c
SD5 (l9, l, c)

­jl

­c
D1

­

­c
SD6 (l9, l, c)

­zl

­c
DG,

­(= 3 = 3 u)
­t

5 = 3 [(= 3 B) 3 (= 3 a)

with the three covariant components of the equation describing
the time evolution of the magnetic field via the vector poten-1 (= 3 = 3 a) 3 B],
tial a,

can be expressed as,
­a
­t

5 (= 3 u 1 =w) 3 B 2 h (= 3 = 3 a) 1 =f,

2i g O
l
O

b
FR1ab (l9, l, c) ubl 1 R2ab (l9, l, c)

­ubl

­c being cast as

1
­

­c
(R3ab (l9, l, c) ubl) 1

­

­c
SR4ab (l9, l, c)

­ubl

­c
DG

(28)
2i g O

l

)l92l(c)aal 5 O
l
FA1a (l9, l, c) wl 1 A2a (l9, l, c)

­wl

­c
G

5 O
l
O

b
FP1ab (l9, l, c) abl 1 P2ab (l9, l, c)

­abl

­c 1 O
l
O

b

[Wab (l9, l, c) ubl] 2 h O
l
O

b
FQ1ab (l9, l, c) abl

1
­

­c
(P3ab (l9, l, c) abl) 1

­

­c
SP4ab (l9, l, c)

­abl

­c
DG,

1 Q2ab (l9, l, c)
­abl

­c
1

­

­c
(Q3ab (l9, l, c) abl)

while the scalar equation describing the compressible plasma
1

­

­c
SQ4ab (l9, l, c)

­abl

­c
DG (30)

motion (i.e., divergence of the velocity equation),

and the scalar equation for the pressure evolution,­(=2w)
­t

5 2=p 1 = ? [(= 3 B) 3 (= 3 a)

­p
­t

5 2(= 3 u 1 =w) ? =P 2 G P=2w,1 (= 3 = 3 a) 3 B],

takes the form is expressed as
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ucl , acl p c u ulu21u,
2i g O

l

)l92l(c)pl 5 O
l
FE1 (l9, l, c) wl 1 E2 (l9, l, c)

­wl

­c uul , aul p c u ulu21u11,
(34)

ufl , afl p c ulu,1
­

­c
(E3 (l9, l, c) w1) 1

­

­c
SE4 (l9, l, c)

­wl

­c
DG (31)

wl , pl p c ulu,
1 O

l
O

b

[F1b (l9, l, c) ubl],

where l is the poloidal mode number. This result can also be
obtained by a full indicial analysis. Casting (34) into more

with the auxiliary equations, useful form, we have

O
l
Szl 2

­aul

­c
D dll9 5 0 (32) O

l
S­acl(c)

­c
2 u ulu 2 1 u

acl(c)

c
D dll9 5 0,

and O
l
S­aul(c)

­c
2 (u ulu 2 1 u 1 1)

aul(c)

c
D dll9 5 0,

O
l
S­afl(c)

­c
2 ulu

afl(c)

c
D dll9 5 0,O

l
Sjl 2

­afl

­c
D dll9 5 0, (33)

O
l
S­ucl(c)

­c
2 u ulu 2 1u

ucl(c)

c
D dll9 5 0,included to avoid third-order radial derivatives, thus preserving

the block tridiagonal structure of the problem. The sub-indices
a and b take on the values corresponding to the c, u, and f O

l
S­uul(c)

­c
2 (u ulu 2 1u 1 1)

uul(c)

c
D dll9 5 0, (35)components, g represents the eigenfrequency, and the sub-

indices l and l9 label the appropriate Fourier coefficients. It
should be noted that one should choose the Fourier component O

l
S­ufl(c)

­c
2 ulu

ufl(c)

c
D dll9 5 0,of order l9 2 l of each coefficient. They take on a range of

values lmin # l, l9 # lmax which needs to be increased as we
move into toroidal geometry from a circular, cylindrical equilib- O

l
S­wl(c)

­c
2 ulu

wl(c)

c
D dll9 5 0,rium, for which only one value is required. A, B, C, D, E, F,

P, Q, R, and W are the coefficients of the Fourier components
of the perturbed variables. These coefficients are expressed in O

l
S­pl(c)

­c
2 ulu

p1(c)

c
dll9 5 0terms of the Fourier components of various combinations of

the metric tensor elements and the Jacobian, along with the
functions f (c), g(c), and q(c) and their derivatives. See the (c ⇒ 0),
Appendix for a listing of these coefficients. In the course of
the calculation of the coefficients, it is necessary to carry out

with the auxiliary equations,numerical differentiation of the metric tensor elements etc. with
respect to u and c. The u derivatives are evaluated employing
fast Fourier transform techniques, and the c derivatives by O

l
Szl(c) 2

­au,l(c)

­c
D dll9 5 0,using Lagrange interpolation. For a large number of radial mesh

points, it is both numerically accurate and computationally
efficient to simply interpolate the equilibrium functions and O

l
Sjl(c) 2

­af,l(c)

­c
D dll9 5 0metric tensor elements obtained from the mapping code using a

primary radial mesh onto a more finely spaced secondary mesh.

(c ⇒ 0),

4. BOUNDARY CONDITIONS
evaluated at the magnetic axis, completing the set of boundary
conditions at the origin. l and l9 take on all values of l underAs an extension from the large aspect ratio or cylindrical

analysis, we can represent the behaviour of the perturbed macro- consideration, where dll9 is the Kronecker delta function.
We choose the boundary condition that assumes the plasmascopic variables at the magnetic axis by
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extends to a stationary, perfectly conducting wall. Now the
electromagnetic boundary conditions in this case require that 1 A2c (l9, l, c)

­wl(c)

­c
G1 O

l
O

b

[Wcb (l9, l, c) ubl(c)]
the tangential perturbed electric field (i.e., the second and third
covariant components of e) and normal perturbed magnetic
field and velocity vanish on the conducting wall. Using Ohm’s 2 hO

l

[Q1cc (l9, l, c) acl(c) 1 Q2cu (l9, l, c)
­aul(c)

­claw these conditions imply that the second and third covariant
components of the perturbed current is zero. We can express
these constraints as 1 Q2cf (l9, l, c)

­afl(c)

­c
1

­

­c
(Q3cc (l9, l, c) acl(c))

(= 3 u)c 1 (=w)c 5 0, 1
­

­c
(Q4cu (l9, l, c) zl(c))],

(= 3 a)c 5 0, O
l

ufl(c) dll9 5 0,
(= 3 = 3 a)u 5 0, (36)

O
l

wl(c) dll9 5 0,(= 3 = 3 a)f 5 0

(c ⇒ cp), O
l

pl(c) dll9 5 0,

with cp being the value of c at the edge of the plasma. Usually O
l
Szl(c) 2

­au,l(c)

­c
D dll9 5 0,cp is taken to be 1. To render the resistive, compressible stability

problem in toroidal geometry soluble, we need to solve a system
of 10 3 L partial differential equations, where L 5 lmax 2 lmin O

l
Sjl(c) 2

­af,l(c)

­c
D dll9 5 01 1. Thus to preserve the tridiagonal structure of the numerical

problem, we require 10 3 L conditions at the boundary of
the confined plasma, as we did at the origin. The additional (c ⇒ cp), (37)
constraints arise from the fact that some of the basic equations
contain only first-order spatial derivatives. Thus we need to for all values of l9 under consideration.
include these equations at the edge of the plasma column in With a simple modification, the code can be used to include
order to provide us with sufficient conditions. Thus for the a vacuum layer surrounding the plasma. In such a region (=

3 = 3 a) 5 0 and we can use the same equations (18)–(21),perfectly conducting wall we can express the constraints as
but with a very large value of h, to simulate this condition.

O
l

aul(c)dll9 5 0,
5. NUMERICAL PROCEDURE

O
l

afl(c)dll9 5 0, Looking at the central and boundary equations, it is evident
that they contain only first- and second-order derivatives of the
perturbed macroscopic variables. Taking advantage of this fact,

2ig O
l

)l92laul(c) 5 O
l
FA1u (l9, l, c) wl(c) we utilise finite difference techniques and use the radial mesh

cj 5 « 1 ( j 2 cp) Dc, with Dc 5 (cp 2 «)/(N 2 1), j is the
mesh index, and cp is the plasma radius. We can define the
derivatives using the centred difference formula and recast Eqs.1 A2u (l9, l, c)

­wl(c)

­c
G1 O

l
O

b

[Wub (l9, l, c) ubl(c)],
(28)–(31) that describe the interior behaviour of the plasma,
into the finite difference form. Thus the interior points (2 #
j # N 2 1) can be represented in the matrix form,2ig O

l
O

b
FR1cb (l9, l, c) ubl(c) 1 R2cb (l9, l, c)

­ubl(c)

­c
G

2ig (Tll9, jũl, j21 1 Ull9, j ũl, j 1 Vll9, jũl, j11) 5 Lll9, jũl, j21 1 Mll9, jũl, j
(38)5 O

l
O

b
FP1cb (l9, l, c) abl(c) 1 P2cb (l9, l, c)

­abl(c)

­c
G, 1 Nll9, jũl, j11 ,

where Lll9, j, Mll9, j , Nll9, j , Tll9, j , Ull9, j , and Vll9, j are square matrices2i g O
l

)l92lac1(c) 5 O
l
FA1c (l9, l, c) wl(c)

whose order depends on the number of Fourier modes em-
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ployed. If lmin # l # lmax and L 5 lmax 2 lmin 1 1, then these g 5 g0 1 Dg, (44)
matrices are of order 10L 3 10L which contains the coefficients
of the finite differenced variables. ũl, j is a column vector con- and a guess ũ0 for the corresponding eigenfunction. Substituting
taining the perturbed macroscopic variables, viz, (44) into (42) leads to the iteration procedure

(3 1 ig05) ũk 5 2i Dg5ũk21, (45)ũ†
l, j 5 (acl, j aul, j afl, j ucl, j uul, j ufl, j wl, j pl, j zl, j jl, j), (39)

with the kth estimate for Dg given byand g is the eigenfrequency. The boundary conditions at the
origin are represented for j 5 1 by

Dg 5
iũk† (3 1 ig05) ũk

ũk† 5ũk
. (46)

2ig (Ull9,1ũl,1 1 Vll9,1ũl,2) 5 Mll9,1ũl,1 1 Nll9,1ũl,2 . (40)

This iteration can be continued until the required accuracy isAlthough this equation has been written in a form consistent
obtained; typically an accuracy of ugk 2 gk21u p 10210 is desired.with (38), the boundary conditions at the origin do not involve
The amount of c.p.u. time required to converge on a solutiong, so that Ull9,1 and Vll9,1 are identically zero. For j 5 N, which
is mainly dependent on the initial choice of g0 . The iterativetreats the boundary conditions imposed at the wall of the con-
equation can be expressed astained plasma, we have

$ũ 5 W, (47)
2ig (Tll9,Nũ,N21 1 Ull9,Nũl,N) 5 Lll9,Nũl,N21 1 Mll9,Nũl,N . (41)

where $ is a block-tridiagonal matrix, W is a column vector,
One of the advantages in working with the scalar and vector and ũ is the solution column vector.
potentials for the velocity (Eq. (13)) is that we are guaranteed Equations of this type can be solved without requiring the
that = ? v depends only on the compressible scalar potential whole matrix to be held in memory at one time (Potter [20];
w, even when the derivatives are expressed in the finite differ- Storer [2]) and we avoid the obstacle of being required to
ence form. This eliminates the problem that occurs when work- calculate the inverses of large matrices, which is very time
ing directly with the components of v which require different consuming. Using this algorithm gives us an expedient method
orders of finite differences to represent the derivatives of the for solving the block-tridiagonal matrix equation (47) and,
radial component, compared with the other components, so hence, a technique to perform the iterative procedure defined
that = ? v will be correctly calculated. by Eq. (45). Thus we have a succinct method for locating the

Expansion of Eqs. (38), (40), and (41) displays the matrix eigenfrequencies g in the complex plane and their correspond-
structure of the problem, which can be expressed via the ma- ing eigenfunctions. The amount of c.p.u. time required to locate
trix equation, each eigenvalue depends on the accuracy of the initial guess

g0. On the Fujitsu VP220 at the Australian National University
one iteration with 200 radial points and 7 poloidal modes takes2ig5ũ 5 3ũ, (42)
about 2 s c.p.u. time and 10 iterations are commonly required.
Thus it is highly desirable for our approximation of the eigen-where 5 and 3 are block-tridiagonal matrices of order 10LN
value to have at least some degree of accuracy. To account for3 10LN, where L 5 lmax 2 lmin 1 1, and N denotes the number
the toroidicity of typical toroidal systems in our analysis, weof radial mesh points employed. Thus the spectral analysis is
are required to employ a finite number of poloidal harmonics.reduced to a general eigenvalue problem, where the eigenvalue
This leads to very large matrices. For example, if we chooseg represents the eigenfrequency of the contained plasma while
to use 10 harmonics and 100 radial mesh points (L 5 10,the eigenvectors ũ contain the eigenmodes of the macroscopic
N 5 100), the matrices 5 and 3 have dimensions 10000 3perturbed variables defined by Eq. (39), i.e.,
10000. The alternative package eigenvalue solvers (based on
the QR algorithm) we could employ an effective limit of around

ũ† 5 (ũ†
l,1 , ũ

†
l,2 , ..., ũ

†
l,N). (43) 1000 3 1000. To solve directly eigenvalue problems involving

matrices with larger dimensions than this is unrealistic. In order
to obtain a first approximation to the full eigenvalue spectrum,The inverse vector iteration procedure, as outlined in Potter

[20], provides us with a method of computing both the eigenval- we have to compromise between the number of mesh points
and the number of harmonics used; i.e., we need to satisfy,ues g in the complex plane and the corresponding eigenvectors

of the eigensystem described by Eq. (42). The method is initiali- N 3 L p 100. We often run the package solver (i.e., the
QR algorithm) which finds all the eigenvalues for individualsed by choosing a value of g (say g0) which is close to the

eigenvalue required, i.e., poloidal harmonic values and then employ the inverse iteration



22 SCHELLHASE AND STORER

code to link together the harmonics. While this method does
not give us a good approximation to the toroidal spectrum, it
at least provides us with a good starting point for the point
spectrum values in the complex frequency plane and gives a
very good indication that we have not missed significant eigen-
values.

VALIDATION

A fundamental aspect of every computational research pro-
gram is a testing of the numerical code at various limits to
ensure validation. SPECTOR is essentially a toroidal spectral
code that is capable of being employed with compressible,
incompressible, resistive, or ideal assumptions, in geometries
ranging from toroids to cylinders, with arbitrarily shaped poloi-
dal cross sections. In order to have confidence in SPECTOR’s
results, we need to validate the code with these assumptions
and limits in mind.

A magnetohydrodynamic equilibrium is determined by a
number of factors, including the shape of the poloidal cross
section, the aspect ratio, the pressure, and the safety factor FIG. 1. Eigenfrequency spectrum for incompressible constant current
profiles. The associated eigenspectrum will therefore depend model with modified boundary conditions.
on these factors in a complex way. The first test will be for a
constant current model at a large aspect ratio with circular cross
section, which has an analytic solution [21]. For this model the imaginary g-axis. For clarity we have chosen not to display
eigenspectrum depends only on the dimensionless quantities them.
nq0 and k, defined by The direct consequence of a change in resistivity is an in-

crease in the density of the spectral points on the characteristic
eigenvalue lines. To quantify this change in density of eigenval-k 5

nrp

Rm
. (48)

ues we referred to the analytical treatment of an exactly soluble
resistive cylindrical MHD model [21]. The frequency spectrum

The Solov’ev equilibrium [22] is equivalent to this model in can be found from
the large aspect ratio limit. To test the validity of our toroidal
spectral code we execute SPECTOR, employing a Solov’ev

ig (ig 2 h (z 2 1 k2)) 5 SBp

B0
D2 F2(l 2 nq)2 6

2ul 2 nquk
Ïz 2 1 k2

G,equilibrium at large aspect ratio, and compare the resultant
spectrum with the spectra obtained from the purely cylindrical

(49)analysis. In comparing various equilibria related to this model,
it is useful to choose parameters so that the values of nq0 and

with z taking on a series of values corresponding to zeros ofk remain the same. The parameters used for the large aspect
the transcendental equation,ratio test are as follows: l 5 1, n 5 50, R 5 150, g0 5 1,

q0 5 0.032. This corresponds to k 5 Ad and nq0 5 1.6. To test
SPECTOR in the incompressible, resistive case, we set wl 5 kzJ9m (z) 6 (z 2 1 k2)1/2 mJm(z) 5 0. (50)
0 in Eqs. (28)–(31). Figure 1 displays in the complex g-plane
the stable frequency spectrum obtained for h 5 5 3 1025. This The quadratic equation (49) will have a real part only if
compares well with the analytic spectrum obtained from Storer
[21] for this model. The stable part of the spectrum forms two
pairs of lines that originate near the real g-axis on either side 4 SBp

B0
D2 F2(l 2 nq)2 6

2ul 2 nquk
Ïz 2 1 k2

G. h2 (z 2 1 k2)2.
of the ideal accumulation point ugAu 5 0.125, initially run paral-
lel to and below the real g-axis, and then arc below until they
converge and meet the lower part of the imaginary g-axis at If this condition is satisfied there will be two solutions in

the third and fourth quadrants of the Argand diagram, as weapproximately 2igA . Figure 2 shows an enhanced view of the
lines near the real g-axis. For this case no instabilities exist have seen in Fig. 1. Now consider two successive values of g

which correspond to values of z which differ by about f (sinceon the positive imaginary g-axis; however an indefinite number
of super-stable modes were found accumulating on the negative the transcendental equation involves Bessel functions) and
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safety factor to ensure that they possess quadratic profiles.
Figure 4 displays the following equilibrium quantities: current
Jf , magnetic field Bu, toroidal field function g(c), safety func-
tion q(c), poloidal field function f (c), and pressure P(c). We
use l 5 1, n 5 50, R 5 150 (so that nq0 5 1.6), and h 5
5 3 1025 with the number of radial mesh points N p 501. For
the compressible case the stable spectra have three branches—
Alfvén, slow magneto-acoustic, and fast magneto-acoustic. Fig-
ure 5 shows the Alfvén and slow magneto-acoustic eigen-
frequency spectra in the complex g-plane. A direct consequence
of the equilibrium possessing a non-constant current in the
toroidal direction is a bifurcation in the Alfvén characteristic
eigenvalue lines near the real g-axis. The endpoints of the lines
are given in terms of,

gA (c) 5
rp

Rq(c)
ul 2 nq(c)u. (52)

If the safety factor q(c) is constant, the ideal Alfvén continuum
collapses to a point and bifurcation in the resistive Alfvén

FIG. 2. Enhanced view of characteristic lines near gA.
spectrum does not occur. However, if q(c) varies with c then the
range of the ideal Alfvén continuum determines the endpoints of
the bifurcation in the resistive spectrum. These bifurcation lineswhich have approximately the same real values. The distance
make an angle of approximately 608 and 458 with the real g-between them can then be written as
axis which is consistent with the theory of Dewar and Davies
[13]. The stable spectrum, as before, is located in the third and

ugi11 2 giu Q Uh2 (z 2
0 1 k2) 2

h
2

((z0 1 f)2 1 k2)U fourth quadrants of the Argand diagram. Starting at the ideal
continuum endpoints (gA(0), gA(cp)), the Alfvén characteristic

Q
h
2

(z02f 1 f2). lines then arc down towards the negative imaginary axis.

Now I(gi) 5 (h/2)(z 2
0 1 k2); therefore we can write z0 5

Ï2I(gi)/h 2 k2. Thus for small resistivity h we can express
the distance between successive eigenvalues as

ugi11 2 giu Q Ïh Ï2f 2I(gi). (51)

Equation (51) implies that the density or spacing of the
eigenvalues on the characteristic lines depends on the resistivity
and specifically varies as Ïh. We see that this result is consis-
tent with the theory of Dewar and Davies [13] and Pao and
Kerner [11]. To verify this numerically we considered the equi-
librium as described above, varied the resistivity from 1 3
1025 , h , 1 3 1023, and calculated the distance between
successive eigenvalues on a particular characteristic line for
each value of h. Figure 3 depicts eigenvalue density versus
Ïh which indicates the Ïh dependence with the correct coef-
ficient.

To test SPECTOR in the compressible, non-constant current,
cylindrical limit we need to include the compressible part of
the velocity in the analysis (w ?5 0) and deal with an equilibrium
which possesses a non-constant current in the toroidal direction.

FIG. 3. Graph of eigenvalue density vs. Ïh.We simulate this by choosing the toroidal field function and
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FIG. 4. Equilibrium quantities for non-constant current model.

As is evident from Fig. 5, the slow magneto-acoustic spec- et al. [3] and Storer [2] and were obtained by executing ERATO
with a large value of the ratio of specific heats G. The compress-trum is located at lower frequency than the Alfvén spectrum.

The endpoints are defined in terms of the Alfvén frequency ible ERATO results were quoted in Chance et al. [5]. We work
with a Solov’ev equilibrium, in which the equilibrium currentgA by
is strictly inversely proportional to the distance from the central

gSM(0) 5 S G

G 1 q2(0)R2D1/2

gA(0) (53)

gSM(rp) 5 0.

The effect of introducing a non-constant current on the slow
sound spectrum is a change in the angles that the bifurcated
lines make with the real g-axis. See Fig. 6. Angles of about
108 and 808 are subtended by these lines. The characteristic
lines associated with the slow magneto-acoustic spectrum then
arc down towards the negative imaginary axis. An indefinite
number of super-stable modes are also evident on the negative
imaginary g-axis. The fast magneto-acoustic waves have a
frequency too high to appear in these diagrams. Figures 7 and
8 show the poloidal projections of the perturbed velocity v for
the associated eigenfrequencies ‘‘a’’ and ‘‘b.’’ It is interesting
to note that the eigenfunctions on the left-hand side of the
bifurcation are concentrated near the magnetic axis and on the
right-hand side of the bifurcation they are concentrated near the
edge of the plasma column, as observed by Ryu and Grimm [9].

To further test the code SPECTOR, we turn our attention to
a toroidal low aspect ratio case and test the ideal parts of the
code against data from the ERATO code [6] and other codes. FIG. 5. Eigenfrequency spectrum for compressible non-constant current

model.The incompressible ERATO results were published in Hughes
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FIG. 6. Details of slow magneto-sonic spectrum.
FIG. 8. Poloidal velocity projection for eigenvalue ‘‘b.’’

axis [22]. This type of equilibrium is a simple model which
dal flux, making it easier to map into the relevant coordinate

corresponds to the constant current model in the cylindrical
system. Two cases are considered: E 5 2, which provides an

limit and embodies most of the essential features of ‘‘real’’
elongated D-shaped plasma, and E 5 1, which yields an almost

toroidal equilibria, including finite aspect ratio and elongated
circular plasma with a slight D-shaped deformation, with vary-

poloidal cross-sectional shape. Employment of Solov’ev equi-
ing ranges of poloidal and toroidal mode numbers l and n, for

libria allows for direct comparison between toroidal and cylin-
ideal, incompressible and compressible plasmas. The model

drical results, providing we maintain the values of k and nq.
employed assumes that the plasma column extends to a station-

Furthermore, this equilibrium has an analytic form for the poloi-
ary, perfectly conducting wall.

For the first case, we consider Solov’ev equilibria which
have an aspect ratio R/a 5 3, toroidal mode number n 5 2,
and ellipticity E 5 2, with values of the safety factor at the
magnetic axis varying from 0.1 # q0 # 1.1. Figure 9 displays
the flux surfaces for this particular equilibrium. Note the elon-
gated D-shape of the equilibrium. Employing SPECTOR in the
ideal, incompressible limit, by setting wl 5 0 and h 5 0 in
Eqs. (28)–(31), we execute the code with the number of radial
mesh points N 5 101 and utilise 11 poloidal harmonics with
24 # l # 6, 23 # l # 7, and 22 # l # 8, depending on the
safety factor’s range. It proved useful to centre the poloidal
modes around the dominant mode number, which can be esti-
mated before the calculation, since usually nq(0) , ldominant ,
nq(cp), for a case where q is a monotonically increasing func-
tion. For each equilibria corresponding to a different value of
q(0), we search for the fastest growing mode (i.e., instability)
along the positive imaginary axis of the g plane. Figure 10
depicts the most unstable mode growth rates as a function of
q(0), where V2 5 2g2q2(cp)R2, with V2 denoting the square
of the growth rate in units of the poloidal Alfvén frequency
(using the poloidal field at the surface of the plasma), where
g is the complex eigenfrequency (obtained from SPECTOR)

FIG. 7. Poloidal velocity projection for eigenvalue ‘‘a.’’ in units of the toroidal Alfvén frequency (using the toroidal
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FIG. 9. Surfaces of constant flux for equilibrium with R/a 5 3, E 5 2,
n 5 2.

field at the magnetic axis), q(cp) is the value of the safety factor
at the boundary of the plasma, and R is the major radius. Note
that many singular surfaces, corresponding to l 2 nq 5 0, exist
due to the shear of the safety factor. From Fig. 10 it is evident

FIG. 11. Poloidal velocity projection for eigenvalue ‘‘a.’’that three resonances or peaks exist although the last two are
rather weak.

To compare this toroidal, incompressible, ideal limit, output
from ERATO [6] was superimposed against our results, Fig.
10. As is evident there is good agreement between the two
codes. It is important to note that since we utilised eleven
poloidal harmonics in the analysis, for computational efficiency
we only employed N 5 101 radial mesh points. Increasing N
refines the agreement between SPECTOR and ERATO. Recon-
struction of the eigenfunctions proves useful for the interpreta-
tion of results and assists in the understanding of the physical
nature of the eigenmodes. SPECTOR has this facility built into
the code. Reconstructing the perturbed physical variables from
the Fourier coefficients contained in the eigenvector ũ†

l,j , as
defined by Eq. (39), by utilising the harmonic expansions (27)
and Eqs. (13) and (14), we can view the poloidal projections
of these quantities. For example, Fig. (11) displays the poloidal
projection of the perturbed velocity v corresponding to the
unstable eigenfrequency ‘‘a,’’ which is in the neighbourhood
of the main resonance, as labelled on Fig. 10. Figure 12 shows
the relative poloidal harmonic contributions to v, averaged (in a
root mean square sense) over all flux surfaces, for the instability.
There is generally a dominant poloidal mode for each eigen-
mode, with decreasing contributions from neighbouring har-
monics. From perusal of Figs. 11 and 12 it is evident thatFIG. 10. Comparison between SPECTOR and ERATO of the ideal, n 5

2 mode growth rates as a function of q(0) for the Solov’ev equilibrium. instability ‘‘a,’’ which is near the main peak or resonance, is
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TABLE II

Eigenvalue for Low Aspect Ratio Solov’ev Case

lmin

lmax 0 21 22 23 24

1 0.076153 0.075649 0.075336 0.075508 0.075621
2 0.123124 0.123824 0.123734 0.123793 0.123837
3 0.131331 0.132252 0.132169 0.132215 0.132252
4 0.134178 0.135253 0.135182 0.135227 0.135263
5 0.135188 0.136345 0.136281 0.136325 0.136361
6 0.135532 0.136723 0.136661 0.136706 0.136742
7 0.135641 0.136844 0.136785 0.136835

Note. The magnitude of the eigenvalue, as a function of the poloidal harmon-
ics used, for a low aspect ratio Solov’ev case (R/a 5 3, n 5 2, E 5 1, N 5

101, q(0) 5 0.4). For comparison the ERATO result is 2ig 5 0.1367.

of poloidal modes and radial mesh points. Table II illustrates
the effect of increasing the number of poloidal modes L (5
lmax 2 lmin 1 1) with various values of lmin and lmax for the case
where q(0) 5 0.4 for the second equilibrium with E 5 1. Note
the eigenvalue as obtained by ERATO is 2ig 5 0.1367. From
Table II we can see that convergence is not uniform with

FIG. 12. Poloidal harmonic contribution to v for eigenvalue ‘‘a.’’
increasing lmax ; however, it is evident that the result for nine
poloidal harmonics centred on l 5 1 is unlikely to change by
more than 0.4% by including more poloidal modes.dominated by the l 5 1 harmonic with significant contributions

One would expect that as we increase N the discrepancyfrom the l 5 21, l 5 0, and l 5 2 harmonics, which is reflected
between the numerical and analytic result would decrease. Thein the poloidal projections.
finite difference procedures employed to simulate the contin-To display the validity of SPECTOR for the toroidal ideal
uum and approximate the spatial derivatives of the perturbedcompressible case, we consider the above equilibrium (R/a 5
variables are second-order accurate so that the numerical result3, E 5 2, n 5 2) and execute SPECTOR with wl ? 0 and
should differ from the analytic result by an amount of orderh 5 0 in Eqs. (28)–(31), using N 5 151 radial mesh points
(Dc)2, where Dc 5 (cp 2 «)/(N 2 1). These results are illus-and eleven poloidal harmonics with 24 # l # 6. We ran
trated in Fig. 13, where we used the above model with N 5the code for two particular values of q(0) and compared with
41, 51, 61, 71, 81, 91, 101, and 151, and 24 # l # 6 forcompressible data from KERNER, PEST, and ERATO, ob-
q(0) 5 0.4. It is evident that the effect of increasing N istained from Chance et al. [23]. Table I displays the comparison
indeed a refinement in the agreement between the numericalbetween the codes.
and analytic result. Figure 13 suggests that a realistic compari-From Table I we can see that the results from SPECTOR
son with the analytic result should only be made after extrapo-are in good agreement with the other existing toroidal codes.
lation.Thus we can conclude that SPECTOR accurately calculates the

ideal unstable spectrum for both compressible and incompress-
TOROIDALLY INDUCED RESISTIVE ALFVÉNible toroidal plasmas.

EIGENMODESIt is of interest to note the effect of including various numbers

A consequence of increasing the toroidicity of the plasma
under consideration is a gradual increase in the poloidal har-

TABLE I monic coupling prevalent in the associated eigenmodes. How-
ever, this is not the only observed effect. Recent studies of theComparison of Specific Compressible Results for V2

stable shear Alfvén spectrum for toroidal plasmas, using the
ideal MHD model, have led to the discovery of the discreteR

a
E q(0) q(cp) n KERNER PEST ERATO SPECTOR

toroidicity-induced Alfvén eigenmodes (TAE modes) by Cheng
3 2 0.3 0.523 2 0.413 0.427 0.431 0.4319 and Chance [24]. These were further investigated by Poedts
3 2 0.7 1.22 2 0.118 0.119 0.120 0.1178

and Schwarz [25], Turnbull et al. [26], Ye et al. [27], and others.
The toroidal coupling effects due to a nonuniform magneticNote. The square of the growth rate V2 5 2g2q2(cp)R2, where g is obtained

directly from SPECTOR, for the Solov’ev model with N 5 151. field over a magnetic surface can cause interactions among the
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FIG. 14. Ideal eigenfrequency spectrum for an equilibrium with aspect
ratio 4. Note the toroidally induced gap and the toroidal Alfvén eigenmodes

FIG. 13. Comparison between the analytic result and the numerical result marked with an x.
extrapolated to Dc 5 0. The linear part of the curve corresponds to values of
N $ 50.

harmonic coupling exists. A direct consequence of this interac-
neighbouring poloidal harmonics and can break up the ideal tion of neighbouring poloidal modes is the formation of the
shear Alfvén continuous spectrum resulting in continuum gaps. continuum gap, as well as the emergence of two isolated global
The size of these gaps depends on the strength of the poloidal TAE modes, marked with crosses in the gap, as is consistent
mode coupling and the appearance of the gaps stresses the with current theory (Poedts and Schwarz [0], Turnbull et al.
importance of the two-dimensional effects. When the poloidal [26]).
mode coupling is strong enough, ideal global Alfvén eigen- To test the effect of introducing finite resistivity on these
modes can be found with frequencies inside the continuum global modes, we steadily increased h from h 5 0 to a highly
gaps. The existence of these toroidicity-induced shear Alfvén resistive case h 5 1022 in a study of the TAE mode in Fig. 14
eigenmodes suggests a new efficient Alfvén wave-heating with the smallest value of Re(g). As was intuitively expected,
scheme. These modes might play an important role in controlled the direct consequence of increasing the resistivity of the model
thermonuclear fusion as they may be destabilised by interaction was the introduction of damping in these modes, indicated by
with fusion born a-particles (Cheng et al. [28, 29], Wong et a ‘‘pulling down’’ of the eigenmodes from the real g-axis.
al. [30]). Figure 15, plotting the negative imaginary part of the eigen-

To demonstrate this phenomenon, using SPECTOR to show frequency against the 2log(h) depicts this departure from the
the effect of resistive damping on these global Alfvén modes, real g-axis, which is consistent with the work by Poedts et al.
we considered an equilibrium with aspect ratio R/a 5 4, ellip- [25]. Features of this graph are the two plateau regions between
ticity E 5 1, toroidal mode number n 5 1, with an approxi- 1025 # h # 1023 and 1029 # h # 3 3 1027. It should be noted
mately quadratic safety factor such that 1.04 # q(c) # 2.833. that this resistive damping is very weak and may not overcome
Employing SPECTOR first as an ideal MHD code, by setting other destabilising mechanisms. We do not have an explanation
h 5 0 in Eqs. (28)–(31), we ran the code with the number of for this interesting behaviour which, at least at the smallest
radial mesh points N 5 101 and N 5 151 and utilised eight values of h, may take the numerical procedure beyond the
poloidal harmonics with 21 # l # 6. The shear in the q(c) limits of its validity for the largest number of radial grid points
profile causes the magnetic field to possess a non-uniform struc- that we were able to use.
ture over the radial domain, which in turn enhances poloidal
harmonic coupling. Figure 14 displays the Alfvén eigen- 8. CONCLUSION
frequency spectrum in the complex g-plane then obtained. The
l 5 1 and l 5 2 ideal continua are evident along the real g-axis. Interest in the results of resistive MHD analysis of toroidal

plasmas remains high, as many of the gross macroscopic proper-In the large aspect ratio analysis, these continua would overlap.
Due to the toroidicity of the current equilibrium strong poloidal ties of these plasmas are described well by this model. It is
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­
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1
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7
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if
7

­7
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7

­7
­u

,
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7

­guu

­c
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(54)
where the factors Yij and Zij are given by,
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­c
Sguu f

7 D2
­

­u
Sgcu f

7 DJ1 fgcu H ­
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­
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Sgcc

7 DJ2
ilfgucgcc
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­c
Sguu
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7
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7

­gff
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